Brain responses to different musical styles in music lovers and non-music lovers: an analysis from the perspective of activation and functional connectivity of neural networks

Authors

DOI:

https://doi.org/10.70478/

Keywords:

fMRI, Music, Music lover, Functional connectivity, Music psychology

Abstract

This experimental study analyzes brain responses to different musical styles depending on the listener’s musical experience. Using functional magnetic resonance imaging (fMRI), both cortical activation and functional connectivity between brain regions (BOLD signals) were evaluated in two groups of participants: music lovers and non-music lovers. Subjects performed an active music listening task under four conditions: tonal music (excerpt from J.S. Bach), atonal music (original work without tonal structure), white noise, and silence. The results indicate significant differences between the two groups, with music lovers showing greater activation in areas associated with emotion, motor control, and sensorimotor integration, as well as broader and more consistent connectivity patterns between cortical and subcortical regions. In contrast, non-music lovers showed more localized and less intense responses. These findings suggest that familiarity and affinity with music influence the brain’s functional architecture during music listening. In conclusion, this study provides empirical evidence of the modulatory role of musical experience in the perception and neural processing of sound, highlighting how music is not only perceived but is also integrated differently depending on the listener’s background. These results may have relevant implications for the design of music-based interventions, both in educational and therapeutic contexts.

Downloads

Download data is not yet available.

References

Altenmüller, E. O. (2001). How many music centers are in the brain? Annals of the New York Academy of Sciences, 930, 273–280.

Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jäncke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65–78.

Bianco, R., Novembre, G., Keller, P. E., Scharf, F., Villringer, A., & Sammler, D. (2016). Neural networks for harmonic structure in music perception and action. NeuroImage, 142, 454–464.

Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29, 4084–4092.e4084. https://doi.org/10.1016/j.cub.2019.09.067

González Brito, A., Santapau, M., Gamundí, A., Pereda, E., & González, J. J. (2021). Modificaciones en la estructura topológica de las redes de conectividad funcional del EEG durante la escucha de música de concierto tonal y atonal en músicos y no músicos. Brain Sciences, 11(2), 159. https://doi.org/10.3390/brainsci11020159

González Brito, A., Gamundí, A., & González, J. J. (2024). Respuestas del cerebro a la interpretación real e imaginada de la música tonal versus atonal: Un estudio basado en redes de conectividad electroencefalográfica. Music Perception, 41(5), 326–347. https://doi.org/10.1525/M P .2024.41.5.326

Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 4, 1008. https://doi.org/10.3389/fpsyg.2013.01008

Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. MIT Press.

Koelsch, S. (2011). Toward a neural basis of music perception: A review and updated model. Frontiers in Psychology, 2, 110. https://doi.org/10.3389/fpsyg.2011.00110

Koelsch, S., Jacobs, A. M., Menninghaus, W., Liebal, K., Klann-Delius, G., von Scheve, C., & Gebauer, G. F. (2019). The quartet theory of human emotions: An integrative and neurofunctional model. Physics of Life Reviews, 33, 1–34. https://doi.org/10.1016/j.plrev.2019.05.001

Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63–77. https://doi.org/10.1016/j.tics.2018.10.006

Lerdahl, F., & Jackendoff, R. (1999). A generative theory of tonal music. MIT Press.

Li, W., Mai, X., Liu, C., & Wang, L. (2019). Differences in functional connectivity of resting-state brain networks between musicians and non-musicians. Frontiers in Psychology, 10, 2800. https://doi.org/10.3389/fpsyg.2019.02800

Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE, 3(2), e1679. https://doi.org/10.1371/journal.pone.0001679

Loui, P., Wessel, D. L., & Hudson Kam, C. L. (2010). Humans rapidly learn grammatical structure in a new musical scale. Music Perception, 27(5), 377–388. https://doi.org/10.1525/mp.2010.27.5.377

Loui, P., Wu, E. H., Wessel, D. L., & Knight, R. T. (2009). A generalized mechanism for the perception of pitch patterns. Journal of Neuroscience, 29(2), 454–459. https://doi.org/10.1523/JNEUROSCI.3784-08.2009

Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. The Journal of Neuroscience, 39(25), 5018–5027. https://doi.org/10.1523/JNEUROSCI.2020-18.2019

Meyer, L. B. (1956). Emotion and meaning in music. University of Chicago Press.

Monelle, R. (1992). Linguistics and semiotics in music. Harwood Academic Publishers.

Nieto-Castañón, A. (2020). Cluster-level inferences. En Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN (pp. 83–104). Hilbert Press. https://doi.org/10.56441/hilbertpress.2207.6603

Pereira, C. S., Teixeira, J., Figueiredo, P., Xavier, J., Castro, S. L., & Brattico, E. (2011). Music and emotions in the brain: Familiarity matters. PLoS ONE, 6(11), e27241. https://doi.org/10.1371/journal.pone.0027241

Rohrmeier, M. A., & Koelsch, S. (2012). Predictive information processing in music cognition: A critical review. International Journal of Psychophysiology, 83(2), 164–175. https://doi.org/10.1016/j.ijpsycho.2011.09.010

Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012). The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432–1443. https://doi.org/10.1016/j.neuropsychologia.2012.02.001

Vuust, P., Dietz, M. J., Witek, M., & Kringelbach, M. L. (2018). Now you hear it: A predictive coding model for understanding rhythmic incongruity. Annals of the New York Academy of Sciences, 1423(1), 19–29. https://doi.org/10.1111/nyas.13622

Vuust, P., & Frith, C. (2008). Anticipation is the key to understanding music and the effects of music on emotion. Behavioral and Brain Research, 31, 599–600.

Vuust, P., & Witek, M. A. G. (2014). Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music. Frontiers in Psychology, 5, 1111. https://doi.org/10.3389/fpsyg.2014.01111

Vuust, P., Østergaard, L., Pallesen, K. J., Bailey, C., & Roepstorff, A. (2009). Predictive coding of music: Brain responses to rhythmic incongruity. Cortex, 45(1), 80–92. https://doi.org/10.1016/j.cortex.2008.05.014

Whitfield-Gabrieli, S., & Nieto-Castañón, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. https://doi.org/10.1089/brain.2012.0073

Wilkins, R. W., Hodges, D. A., Laurienti, P. J., Steen, M., & Burdette, J. H. (2014). Network science and the effects of music preference on functional brain connectivity. Scientific Reports, 4, 6130. https://doi.org/10.1038/srep06130

Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: Identifying differences in brain networks. NeuroImage, 53(4), 1197–1207. https://doi.org/10.1016/j.neuroimage.2010.06.041

Wager, E., & Kleinert, S. (2011). Responsible research publication: International standards for authors. En Promoting research integrity in a global environment (pp. 309–316). World Scientific Publishing.

Downloads

Published

24/10/2025

Issue

Section

Research articles

How to Cite

González-Brito, A., & González-González, J. J. (2025). Brain responses to different musical styles in music lovers and non-music lovers: an analysis from the perspective of activation and functional connectivity of neural networks. Apuntes De Psicología, 43(3), 255-266. https://doi.org/10.70478/

Similar Articles

1-10 of 421

You may also start an advanced similarity search for this article.